From Small-Scale Dynamo to Isotropic MHD Turbulence

نویسندگان

  • Alexander A. Schekochihin
  • Steven C. Cowley
  • Samuel F. Taylor
  • Jason L. Maron
  • James C. McWilliams
چکیده

We consider the problem of incompressible, forced, nonhelical, homogeneous, isotropic MHD turbulence with no mean magnetic field. This problem is essentially different from the case with externally imposed uniform mean field. There is no scale-by-scale equipartition between magnetic and kinetic energies as would be the case for the Alfvén-wave turbulence. The isotropic MHD turbulence is the end state of the turbulent dynamo which generates folded fields with small-scale direction reversals. We propose that the statistics seen in numerical simulations of isotropic MHD turbulence could be explained as a superposition of these folded fields and Alfvén-like waves that propagate along the folds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nonlinear Small-scale Dynamo and Isotropic Mhd Turbulence

Homogeneous incompressible MHD turbulence has been studied in the literature in two main regimes: with and without an externally imposed uniform mean magnetic field. In the former, explicitly anisotropic, case, Kolmogorov-style phenomenologies [3, 2] predict a state of detailed scale-by-scale equipartion between hydrodynamic and magnetic fluctuations, which are Alfvén waves propagating along th...

متن کامل

The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence

A numerical model of isotropic homogeneous turbulence with helical forcing is investigated. The resulting flow, which is essentially the prototype of the α dynamo of mean-field dynamo theory, produces strong dynamo action with an additional large scale field on the scale of the box (at wavenumber k = 1; forcing is at k = 5). This large scale field is nearly force-free and exceeds the equipartit...

متن کامل

Recent Developments in Magnetic Dynamo Theory

Two spectral regimes of magnetic field amplification in magnetohydrodynamic (MHD) flows can be distinguished by the scale on which fields are amplified relative to the primary forcing scale of the turbulence. For field amplification at or below the forcing scale, the amplification can be called a “small scale dynamo.” For amplification at and above the forcing scale the process can be called a ...

متن کامل

Understanding Helical Magnetic Dynamo Spectra with a Nonlinear Four-Scale Theory

Recent MHD dynamo simulations for magnetic Prandtl number > 1 demonstrate that when MHD turbulence is forced with sufficient kinetic helicity, the saturated magnetic energy spectrum evolves from having a single peak below the forcing scale to become doubly peaked with one peak at the system (=largest) scale and one at the forcing scale. The system scale field growth is well modeled by a recent ...

متن کامل

Turbulence and Dynamo in Galaxy Cluster Medium: Implications on the Origin of Cluster Magnetic Fields

We present self-consistent cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and the magnetic field ejection by an active galactic nucleus (AGN). We find that the magnetic fields ejected by the AGNs, though initially distributed in relatively small volumes, can be transported throughout the cluster and be further amplified by the int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003